
Journal of Information Processing Vol.30 260–268 (Mar. 2022)

[DOI: 10.2197/ipsjjip.30.260]

Regular Paper

Low Overhead TCP/UDP Socket-based Tracing
for Discovering Network Services Dependencies

Yuuki Tsubouchi1,2,a),b) Masahiro Furukawa3,c) RyosukeMatsumoto1,d)

Received: May 31, 2021, Accepted: December 3, 2021

Abstract: The widespread use of cloud computing has made it easier for service providers to develop new features
and handle increased access. However, the network dependencies among components in distributed applications de-
ployed in the cloud are becoming more complex because the number and types of components are increasing. When
system administrators make changes to a system, they cannot specify the impact of the changes, which may lead to
larger failures than expected. Current methods of automatically discovering dependencies trace network flows included
in TCP/UDP sockets in the Linux kernel on all hosts deployed in distributed applications. However, as the rate of com-
munication increases, the number of flows transferred from the kernel space to user space increases, which increases
CPU usage for tracing. We propose a low-overhead method of bundling multiple flows with the same network service
into a single flow in a kernel to discover dependencies. The proposed method reduces the number of transferred flows
to the user space, thus reducing CPU usage. Experimental results from evaluating our method indicate that the method
maintains a CPU overhead below 2.2% when the number of flows increases.
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1. Introduction

As cloud computing becomes more widespread, distributed ap-
plications deployed in the cloud are required to increase the num-
ber of accesses, develop new features, and operate for a long pe-
riod. Distributed applications are composed of many different OS
processes (henceforth, network services) that communicate over a
network. Service providers use the scale-out method to distribute
the access by increasing the number of replicas of each network
service. When adding new features, different types of network
services called middleware may be added to the system to execute
load balancing, caching, full-text text search, and other features.
During long-term operation, migrating the platform where the ap-
plications are deployed may be necessary. In such cases, old and
new systems can be temporarily mixed within the applications.
These factors complicate the network dependencies among net-
work services.

System administrators must continue to modify a system to im-
prove security and add functionality while maintaining a high
level of reliability for complicated distributed applications [2].
An anomaly in a particular network service, such as a failure
or performance degradation, can affect other network services
through the network. If system administrators make a problem-
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atic modification, the negative impact propagate to all the network
services that depend on the modification. If system administra-
tors modify the system without knowing the dependencies among
the network services, the modification can cause a larger-than-
expected failure. To avoid widespread failures, system adminis-
trators need to know the dependencies and identify in advance the
areas that will be affected by the modification. However, since de-
pendencies change dynamically, it is difficult for system admin-
istrators to remember all dependencies. Therefore, automatically
discovering dependencies is desirable.

There are currently two approaches for discovering dependen-
cies: one that modifies the application or middleware code and
one that does not. Application-modified methods involve inter-
cepting network communication [3], [5], [6], [7], [8], [19], [23],
[25], [30], [31]. Application-unmodified methods involve adding
discovery processing to the application code before and after net-
work communication [12], [26], [27]. To avoid extra tasks, dis-
covering dependencies without adding applications or middle-
ware code is desirable. To avoid application-performance degra-
dation, discovering dependencies with low overhead is necessary.

Application-unmodified methods [5], [8], [19], [25], [30] trace
the source and destination tuples (henceforth, flows) from net-
work sockets in the Linux kernel. These methods do not re-
quire modifying the user-space code because of the indepen-
dence on higher-level application layer protocols. Neves et al.’s

A preliminary version of this paper has already been published at the 1st
IEEE International COMPSAC Workshop on Advanced IoT Computing
(AIOT 2020) in July 2020 [28]. In contrast to the preliminary version,
this paper expands the novelty of the proposed method and enhances the
experiments comparing the proposed method with other existing meth-
ods.
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method [25] intercepts the TCP/UDP processing path in the Linux
kernel, thus aggregates identical flows in kernel within a certain
period. The aggregation reduces CPU usage for transferring the
flows from the kernel space to user space when the number of
TCP/UDP messages increases. However, the number of connec-
tions per time unit increases in a network service having a large
number of short-lived TCP connections compared with one in
which persistent connections are used. Increasing the number
of connections increases the number of flows, which in turn in-
creases the transferring cost.

We propose a new application-unmodified method that main-
tains low overhead even when the number of flows increases to
automatically discover dependencies via TCP/UDP. The pro-
posed method bundles multiple TCP/UDP flows, when the des-
tination of the flows are the same network service, into a single
flow in the Linux kernel. This can reduce the number of flows
transferred to the user space by bundling flows in the kernel space.
We implemented our in-kernel flow-bundling method with the ex-
tended Berkeley Packet Filter (eBPF) [4], [13], which allows arbi-
trary programs to be executed within the constraints of a sandbox
in the Linux kernel. We then conducted experiments to evaluate
the effectiveness of our method. The experimental results indi-
cate that our method maintains CPU overhead below 2.2% as the
number of flows increases and that the overhead of application
latency is sufficiently small.

The rest of this paper is organized as follows. In Section 2, we
give background and discuss current methods and our motivation.
In Section 3, we present the design of our proposed method and
its implementation with eBPF. We discuss the experiments we
conducted to evaluate the effectiveness of the proposed method
in Section 4 then present the results along with limitations of the
proposed method in Section 5. We conclude the paper in Sec-
tion 6.

2. Background and Motivation

2.1 Distributed Applications in Cloud
Distributed applications have complex network dependencies

because of the development of new features, load balancing, and
network communication among different applications.

The three-tiered architecture, which is composed of a web
server, an application server, and a database server [20] is used in
distributed applications deployed in the cloud. Distributed appli-
cations often include middleware servers suitable for the feature
requirements of web services. For example, application devel-
opers use a NoSQL [14] such as a key-value store (KVS) and a
full-text search engine, as the additional middleware. This is in
accordance with the requirements of user access patterns and the
required data structure which cannot be satisfied using traditional
relational databases. To access the application, application users
query an external DNS server and obtain the IP address of the
web server. When using domain names for connecting internal
endpoints in private networks, each service queries the internal
DNS server and obtains the destination address.

The load can be balanced with multiple network services with
the same configuration in accordance with the increase in the
number of accesses because of the limitation of hardware capac-

Fig. 1 Example of system configuration of distributed applications.

ity [15].
When features of an application are reused by other applica-

tions, these other applications communicate with the application
over the network. The microservice architecture [11] divides a
single and monolithic application into many small applications,
and loosely couples them to reuse each service.

2.2 Definition of Dependencies
We use the definition of dependencies reported by Zand et

al. [31]. A service S 2 depends on another service S 1 if the la-
tency, degradation, or failure in S 1 directly or indirectly causes
latency, degradation, or failure in S 2.

This definition is attributed to the implementation of TCP/UDP
in the UNIX OS as follows. Network services using TCP are di-
vided into two network-service sides: connection-requesting side
and listening side. The connection-requesting side is called a
client, and the listening side is called the server. The server opens
a fixed listening port and waits for connection requests. If no port
is specified, the client opens a short-lived port randomly assigned
by the OS and connects to the server’s listening port. Since UDP
is a connectionless protocol, it has no connection-requesting side.
In UDP, we refer to the side that listens on a fixed port as the
server and the side that does not listen as the client. The client
will not operate if the server stops, but the server will maintain
the listening state even if the client stops. Within the scope of
TCP/UDP, S 1 is a server, and S 2 is a client.

The application layer protocols used in the cloud can also dis-
tinguish between the requesting and responding sides, such as
HTTP, DNS, and database query and response. The requesting
side is dependent on the responding side in application layer pro-
tocols as well as in TCP/UDP. There is a practice of matching
the direction of dependency between these two layers in many
network services deployed in the cloud. In Fig. 1, for example,
the web and application servers are both the TCP connection lis-
teners and the HTTP request listeners, and the database servers
are the TCP connection listeners and listen for queries using their
own custom protocols.

2.3 Short-lived and Persistent TCP Connections
Distributed applications use a short-lived or persistent TCP

connection. A short-lived connection establishes a TCP connec-
tion for each request. A persistent connection reuses an estab-
lished TCP connection to reduce the overhead of establishing and
terminating the connection. To discover dependencies of various
applications, we should trace both short-lived and persistent con-
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nections with a low overhead.
Although persistent connections are advantageous in perfor-

mance, Moon et al. [22] argue that not all applications benefit
from persistent connections. To support persistent connections,
applications need to manage the states of the connections. For
example, applications need to periodically check for connection
timeouts and terminate idle connections. If a network device re-
laying connections tracks the connection states, the tracking ta-
ble can become full as the lifecycle of the connections becomes
longer. This makes the processing and configuration more com-
plicated and error-prone. In PHP applications, persistent connec-
tions are often discouraged to prevent resource abuse [1].

2.4 Weights of Edges in the Dependency Graph
Weighting the edges of a dependency graph with network ser-

vices as vertices and flows as edges enables system administra-
tors to determine which vertex or edge has a problem. Examples
of edge weights are throughput per flow, round trip time (RTT),
number of messages, number of errors in sending and receiving
messages, and number of connections.

Because some of these metrics cannot be measured at the time
of TCP connection establishment, it is necessary to obtain the
metrics for each TCP message. For example, the throughput can
be calculated from the total length of messages transferred per
unit of time. Thus, a message length must be obtained each time
the message is sent or received.

2.5 Related Works
Packet-based, socket-based, and transaction-based methods

have been proposed for discovering dependencies.
The packet-based methods collect packets from the existing

traffic and discover dependencies on the basis of the destination
and source information contained in the packets [3], [6], [7], [23],
[31]. Since we collect packets from network devices or an OS
kernel on the host, system administrators do not require modify-
ing existing applications. If the packets are observed at network
switches, deploying additional processes on the hosts is unnec-
essary because system administrators modify only the switches.
However, if all the packets are observed, the CPU usage for
packet collection and analysis becomes large when the packets
rate is large.

Transaction-based methods trace transactions on application
layer protocols such as HTTP requests and responses, and
database queries and responses [12], [26], [27]. These meth-
ods can discover the path of each transaction and measure
application-level statistics, such as response time and the num-
ber of errors. However, they require application developers to
modify the code of the application and off-the-shelf middleware.
The additional logging increases the overhead of collecting logs.

Socket-based methods trace flows included in network sockets
in an OS kernel [5], [8], [19], [25], [30]. Current visualizing sys-
tems of a dependency graph use socket-based methods for discov-
ering dependencies. CauseInfer [5] and Microscope [19] require
the dependency graph as prior knowledge to be input into a statis-
tical model to diagnose the cause of performance issues. Weave
Scope [30], Datadog Network Performance Monitoring [8], and

Neves et al.’s method [25] enable system administrators to visu-
ally understand network usage by application by visualizing the
dependency graph. We classify socket-based methods into the
following three categories: snapshot polling, streaming, and in-
kernel flow aggregation.

Snapshot polling method CauseInfer periodically takes
snapshots of the list of flows from the Linux proc file system. We
call this method as snapshot polling method. This method does
not require modifying the kernel code and obtains only the data
provided by the kernel in the user space. However, this method
can miss flows for TCP connections that are shorter-lived than the
snapshot and acquisition intervals. It also has an OS implementa-
tion limitation, i.e., UDP flows cannot be obtained from the proc
file system.

Streaming method Microscope [19] and Weave Scope [30]
intercept system calls or kernel functions regarding TCP/UDP
socket operations in the Linux kernel with Linux Kernel Probes
(Kprobes) [21] and tracepoints [9]. We call these methods as
streaming methods. After obtaining the flows from the argu-
ments and returning values of the intercepted system calls and
kernel functions, the flows are immediately transferred to the user
space. Since this method intercepts the TCP/UDP path in the ker-
nel, there is no loss of flow. However, as the number of TCP
connections per unit of time and number of messages for UDP
transmission and reception increases, the number of flows to be
transferred increases. Thus, the CPU usage with the methods in-
creases.

In-kernel flow-aggregation method Datadog Network Per-
formance Monitoring [8], and Neves et al.’s method [25] use the
Linux eBPF to aggregate events with the same flow in the ker-
nel within a certain period. We call these methods as in-kernel
flow-aggregation methods. The aggregation reduces CPU usage
for transferring the flows to the user space, as the nummber of
TCP/UDP messages increases. However, the number of connec-
tions increases in a network service having a large number of
short-lived TCP connections compared with a service in which
persistent connections are used. The issue with these methods is
that the transfer cost is proportional to the increase in the number
of flows.

2.6 Motivation
A challenge common to each method is increased CPU usage

or application processing overhead. A single TCP connection
consists of multiple round trips of packets, and single or multiple
transactions are issued over a single TCP connection. Therefore,
socket-based methods are advantageous in terms of CPU usage.

Random sampling is a common solution to reduce tracing
overhead, but sampling can result in missing dependencies. In
batch processing, in particular, some clients communicate with
the server only once a day or week. The probability of miss-
ing dependencies of network services that communicate rarely is
higher than that of network services that communicate constantly.
System administrators can exclude hosts with a large overhead
from the tracing targets as a first-aid measure in actual operation.
However, remembering the excluded hosts increases their cogni-
tive load.
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We need a socket-based low-overhead tracing method to ob-
tain complete dependencies. To address the issue of the in-kernel
flow-aggregation method on TCP short-lived connections, reduc-
ing the number of flows transferred to the user space is effective.
To improve the in-kernel flow-aggregation method, the key to our
proposed method is to bundle multiple flows into a single flow
in the kernel. However, bundling all flows with a network ser-
vice communicating with many other network services into a sin-
gle flow can result in missing dependencies. Thus, our method
should identify multiple destinations.

3. Proposed In-kernel Flow-bundling Method

Clients can connect with a server via many different short-lived
ports with the same IP address to process network I/O concur-
rently in distributed applications. In a web application, for exam-
ple, the web server can have multiple worker processes to process
multiple HTTP requests concurrently, and each worker process
can connect to the same database server. Considering multiple
flows having different short-lived ports of the clients to the same
listening port as a single flow does not result in missing depen-
dencies.

3.1 Design of the Proposed Method
Figure 2 shows an overview of our proposed method in a host.

Network services in a user space on the host generally execute
TCP/UDP communication through sockets in the kernel. The
tracing process on the host tranfers a program for tracing flows
to the kernel at boot time of the process. The procedure of the
kernel program is as follows.

Step 1 The kernel program intercepts the kernel-function
calls corresponding to TCP connection establishment and
TCP/UDP messages transmission/reception.

Step 2 The kernel program takes the socket structure as input
and executes the in-kernel flow-bundling shown in Algorithm 1.
A hash table is created to bundle and store the flows at boot time
of the tracing process. Each time a kernel function to be inter-
cepted is called, the kernel program stores the intercepted flows
in the hash table. The following tuple is a key in the hash ta-
ble: <source address (saddr), destination address (daddr), listen-
ing port (lport), flow direction, IP protocol>.

Fig. 2 Overview of tracing with in-kernel flow-bundling.

Algorithm 1 measures the network throughput as the weight
of the dependency graph. Intercepting each TCP message send-
ing/receiving function can obtain statistics such as the message
length required for building a weighted dependency graph as de-
scribed in Section 2.4. The kernel program stores the intercepted
message length in a hash table as statistical data to calculate the
network throughput.

The procedure for determining the direction of the flow de-
scribed in Section 2.2 is as follows. Since UDP is a non-
connection protocol, there is no procedure to establish a con-
nection like TCP’s connect and accept. The listening side must
specify the listening port with the bind() system call at startup.
The kernel program is attached to the bind(), and the program
obtains the port number from the bind() argument and stores
it into a table. It looks up the source port in the flow ob-
tained from the UDP message send/receive functions (PROBE
UDP SENDMSG, PROBE UDP RECVMSG) in the table of the
bind() ports. The result of looking up leads to whether the source
port is the listening port. If the source port is the listening port,
the flow has the incoming direction, otherwise the flow is in the
outgoing direction.

For TCP, if the function where the kernel program is called
is a function called from the connect system call (PROBE
TCP CONNECT), the flow is in the outgoing direction. If it

Algorithm 1 Algorithm of in-kernel flow-bundling
Input: Socket structure S , listening ports P
Output: Dump all bundled flows on hash table for storing bundled flows H
1: new H
2: function get listening port and direction(S )
3: if P.lookup(S .sport) then
4: return S .sport, INCOMING
5: else
6: return S .dport, OUTGOING
7: end if
8: end function
9: function insert flow(S ,proto,msglen)

10: lport, dir← get listening port and direction(S )
11: key← {S .saddr,S .daddr,lport,dir,proto}
12: stats← H[key]
13: if stats == NULL then
14: Initialize stats
15: stats.msglen← msglen
16: H.insert(key, stats)
17: else
18: stats.msglen+ = msglen
19: H.update(key,stats)
20: end if
21: end function
22: function probe tcp connect(S )
23: insert flow(S , TCP, 0)
24: end function
25: function probe tcp accept(S )
26: insert flow(S , TCP, 0)
27: end function
28: function probe tcp sendmsg(S ,msglen)
29: insert flow(S , TCP, msglen)
30: end function
31: function probe tcp recvmsg(S ,msglen)
32: insert flow(S , TCP, msglen)
33: end function
34: function probe udp sendmsg(S ,msglen)
35: insert flow(S , UDP, msglen)
36: end function
37: function probe udp recvmsg(S , msglen)
38: insert flow(S , UDP, msglen)
39: end function
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is a function called from the accept system call (PROBE TCP
ACCEPT), the flow is in the incoming direction. The TCP mes-
sage sending/receiving functions (PROBE TCP SENDMSG,
PROBE TCP RECVMSG) also cannot identify the direction
from the function name because TCP sends/receives messages in
both directions. As with UDP, the bind() port identifies the TCP
flow direction.

Step 3 The tracing process placed in the user space obtains
a list of bundled flows from the hash table. It also deletes the
obtained flows from the hash table. The process is repeated at
regular time intervals.

3.2 Implementation
We implemented our method using the eBPF assuming Linux

(Linux Kernel version 5.6 or later), which is widely used in cloud
applications.

We used eBPF to run the kernel program to bundle flows in the
kernel. eBPF users can write kernel programs in the constrained
C language and execute the bytecode compiled using the C com-
piler Clang [18] in a sandbox within the kernel.

To intercept the kernel function and system calls, we used
Kprobes, a dynamic tracing technology for the Linux kernel.
Kprobes can set a breakpoint at addresses in the kernel code and
execute pre-defined handlers at the breakpoints. Kprobes and
eBPF can attach an eBPF program to a breakpoint of a kernel
function. To access sockets, our method in this implementation
attaches kernel functions that take a strcut sock structure, or a
struct sk buff structure as an argument or return value. For TCP,
our method attaches the kernel programs to the tcp v4 connect

function called from the connect() system call and inet csk accept

function called from the accept() system call, tcp sendmsg func-
tion for sending TCP messages, and tcp cleanup rbuf function
called for receiving TCP messages. For UDP, our method also
attaches the kernel programs to ip send skb function called from
the sendmsg() system call and skb consume udp function called
from the recvmsg() system call.

To store the bundled flows, our method uses eBPF maps, a
generic data structure that allows data to be shared between eBPF
programs or between kernel space and user space processes. The
eBPF maps support multiple types of data structures, such as hash
tables and arrays. Our method also uses eBPF maps to store the
listening ports bound by the bind().

To obtain the bundled flows, our method uses the bpf mao

lookup and delete batch() system call to atomically retrieve and
delete multiple bundled flows in the table. The system call is
repeated at 1 s intervals to keep acquiring the latest converged
flows.

We published this implementation as a library in the Go lan-
guage *1. Our library is intended to be embedded in a network-
dependency visualization system such as Weave Scope [30].

4. Experiments

To confirm the effectiveness of our method, we exprimentally
evaluated its CPU overhead and latency overhead.

*1 https://github.com/yuuki/go-conntracer-bpf

4.1 Experiment Setup
Machine specifications We prepared one virtual machine for

each client and server in Sakura Cloud *2. The hardware spec-
ifications of the virtual machines are Intel Xeon Gold 6212U
2.40 GHz 6-core CPU, 16 GiB memory. The OS of each ma-
chine is Ubuntu 20.10 Kernel 5.8.0, and the network bandwidth
between virtual machines is 1 Gbps.

Load generation We implemented connperf *3, a load gener-
ation tool for TCP/UDP, to pseudo-generate the load of the appli-
cation. It runs in either client mode or server mode and supports
both short-lived and persistent connection methods of TCP, on the
basis of the description in Section 2.3. The connperf communica-
tion over TCP and UDP is a simple echo client and server, where
the client sends a message to the server and the server sends back
the received message to the client.

Comparison methods Current socket-based methods were
compared with the proposed method. The snapshot polling
method takes snapshots of sockets in the kernel at regular in-
tervals through Netlink [24], a mechanism for communicating
messages between the kernel space and the user space, and Pro-
cess Filesystem (procfs). The streaming method attaches to
tcp connect v4 function and inet csk accept function in TCP to
obtain only the flows generated at the time of connection estab-
lishment. The in-kernel flow-aggregation method is based on the
implementation described in Section 3.2 and includes the both
source and destination ports as keys in the hash table for storing
flows.

Evaluation metrics The proposed method requires small
overhead of CPU usage and application latency. CPU overhead is
measured as CPU utilization of the tracing process. Latency over-
head is the sum of execution times of all eBPF programs executed
during a round trip of connperf. The execution time of an eBPF
program is obtained from the eBPF statistics maintained by the
Linux kernel [16]. The CPU utilization and execution time of the
eBPF programs are the arithmetic mean values when the tracing
process is executed for 30 s.

Parameters The polling-interval set for each method to be
compared with the proposed method was set to 1 s. The message
length of connperf was fixed to 64 bytes.

To enable the reproduction of the experiments, we opened the
programs to automate the experimental procedure available in the
public repository *4.

4.2 Experimental Results
4.2.1 CPU Overhead

Figure 3 compares CPU utilization per CPU core over varying
round trips per second of TCP short-lived connections, persistent
connections and round trips per second of UDP. We varied the
load parameters between 5k and 35k on the basis of the C10K
problem [17], which is a scalability problem when the number of
simultaneous connections is on the order of 1k.

Short-lived TCP connections Figure 3 (a) shows that the
CPU utilization of the proposed method remained below 1.2%.

*2 https://cloud.sakura.ad.jp
*3 https://github.com/yuuki/connperf
*4 https://github.com/yuuki/shawk-experiments
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Fig. 3 CPU overhead.

Fig. 4 Latency overhead.

The CPU utilization of the streaming method increased from 2.9
to 21.3% in proportion to the increase in the number of round
trips. The CPU utilization of the in-kernel flow-aggregation
method increased from 2.6 to 11.5%. The CPU utilization of the
snapshot polling method was less than 1%, the lowest among the
methods. Since the snapshot polling method cannot trace all of
the short-lived connections, the number of obtained connections
was small, resulting in a low CPU utilization.

Persistent TCP connections Figure 3 (b) shows that the
CPU utilization of the proposed method remained below 2.2%.
That of the snapshot polling method ranges from 3 to 23.3% and
that of the in-kernel flow-aggregation ranged from 2.1 to 5.0%.
The CPU utilization of the snapshot polling method increased as
the number of persistent connections increased because the num-
ber of scanning connections increased. The CPU utilization of
the streaming method was lower than that of the other methods
because this method traces the persistent connections only once,
immediately after the start of measurement.

UDP Figure 3 (c) shows the same trend in change as that of
TCP for short-lived connections. This is reasonable because the
UDP processing in connperf is similar to that of a short-lived con-
nection excluding the connection establishment. Due to the lim-
itation of Linux procfs, the snapshot polling method cannot scan
UDP; therefore it was not considered for this metric.

With the proposed method, as the number of source or destina-
tion network services increased, the number of flows transferred

to the user space increased. We define the rate of the number of
bundled flows (B) to the total number of unique flows (T ) as a
bundling rate (R) (R = 1 − B/T ). To measure the effect of the de-
creased bundling rate, we emulate the communication with mul-
tiple network services by placing a connperf process on a Docker
container.

Figure 3 (d) shows the CPU utilization of the proposed method
when the number of network services was varied from 200 to 1k.
The total number of round trips per second and that of connec-
tions were fixed at 10k. The total round trips and connections
were distributed to the network services equally. The bundling
rate was varied from 0.98 to 0.9 in theory. The CPU utilization
of the proposed method remained less than 2% regardless of the
number of network services.
4.2.2 Latency Overhead

We measured the execution time of the eBPF program for the
same environment and parameter variations as in the CPU uti-
lization measurement. Figure 4 shows the arithmetic mean of the
sum of the execution times of all the eBPF programs executed
during the round trip. This experiment did not involve measur-
ing the latency of the snapshot polling method since it does not
intervene in the communication path as other methods do.

Figure 4 shows that the maximum execution time was 6 µs for
each measurement. For TCP short-lived connections, the latency
overhead of the proposed method was 0.4–4% higher than the
in-kernel flow-aggregation method and 54–58% higher than the
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streaming method. For TCP persistent connections, the over-
head was −7.0–0.7% higher than the in-kernel flow-aggregation
method. For UDP, the overhead was 14–25% lower than the
in-kernel flow-aggregation method and 8–12% higher than the
streaming method. The streaming method had a lower overhead
for TCP short-lived connections and zero overhead for TCP per-
sistent connections compared with the other methods. This is
because the streaming method only traces the flows during TCP
connection establishment.

5. Discussions

5.1 Evaluating the Overheads
CPU The proposed method is the most efficient of the socket-

based methods for discovering complete dependencies. This is
because the method bundles all the flows into a single flow no
matter how much the flows increased. The proposed method
has sufficiently low CPU utilization when the number of bun-
dled flows is less than 1k. It can maintain low CPU utilization
even when the number of communicating targets increases. This
means, for example, that even if 1k network services are deployed
under a load-balancer service, the flows generated by the services
can be traced with a low CPU utilization. However, in Fig. 3 (d),
the flow-bundling rate should approach 0 as the number of net-
work services increases from 1k to 10k. When the flow-bundling
rate becomes lower, the performance difference between the in-
kernel flow-bundling and the in-kernel flow-aggregation becomes
small.

Latency The RTT by Internet Control Message Protocol
(ICMP) ping between the virtual machines was 300 µs. The round
trip overhead was 1/50th the RTT since 6 µs for the proposed
method. This is a sufficiently small overhead for the total latency
including the network transfer.

5.2 Evaluating the Accuracies
To discuss the accuracies of dependency discovery with the

proposed method, we take the case where multiple network ser-
vices with different IP addresses are provided through the same
IP address and the case where multiple network services are pro-
vided with a single IP address.

Identifiability of destination servers behind a relay When
a client communicates with multiple servers via the same IP ad-
dress, depending on the relay method, socket-based methods may
not be able to identify multiple servers individually. There are
two types of network relays used in the cloud: TCP/UDP session
terminating and packet forwarding [15].

TCP/UDP session terminating places a relay network service
between a client and servers. Since the relay network service
creates sockets, socket-based methods can discover dependencies
between clients and servers that communicate with the relay net-
work service, respectively. The proposed method can identify
multiple servers with different IP addresses via the relay network
service.

Packet forwarding rewrites the packet header with techniques
such as Network Address Translation (NAT), and thus the clients
and the servers do not know each other’s local IP addresses. Be-
cause packet forwarding does not create network sockets for re-

laying, socket-based methods cannot discover relay dependen-
cies. This is an issue common to socket-based methods, re-
gardless of whether flows are bundled or not. To solve this is-
sue, matching the forwarding history with the flows traced by
socket-based methods is required, either by tracing packets be-
fore and after forwarding, or by looking up the NAT table. The
proposed method can identify multiple servers with different IP
addresses by unbundling the bundled flows in the user space. The
flow bundling multiple servers can be unbundled into the bun-
dled flows per server by matching the forwarding history with
the bundled flows because the forwarding history has the relation
with the destination IP address and port from the clients and the
forwarding destinations.

Identifiability of source clients in front of a relay When
multiple clients communicate with a single server via the same
IP address, identifiability of relay source clients is an equivalent
issue about identifiability of relay destination servers.

5.3 Limitations
Server identifiability When multiple network services are

provided on a single server with the same listening port, the
proposed method cannot distinguish these network services be-
cause of each network service being bundled by the listening port.
However, at least in Linux, multiple network services cannot lis-
ten on the same listening port of the same IP address. The ex-
ception is that network services enable the Linux socket option
SO REUSEPORT *5 to allow multiple different network services
to use the same port. SO REUSEPORT is designed to improve
load balancing on threads by allowing multiple threads in a sin-
gle network service to each listen on the same port. Even if
SO REUSEPORT is enabled, we believe that multiple network
services on a single server are rarely bundled into a single flow.

Client identifiability The proposed method cannot distin-
guish between different clients with the same IP address because
it lacks the short-lived ports on the client. Adding the process
name of the network service to the uniqueness identifier solves
the issue, but it does not address the case of duplicate process
names. However, container-based virtualization, which is cur-
rently in widespread use, does not recommend to run multiple
network services within a single container [10]. The cases in
which we want to identify processes with the same process name
on the same host individually will become rare in the future.

5.4 Timeliness of Dependency Discovery
The snapshot polling and in-kernel flow-aggregation and pro-

posed methods delay the discovery of dependencies by the inter-
val since these methods acquire flows at regular time intervals.
However, since system administrators are expected to visually
check for dependencies, a delay small enough to be unrecogniz-
able by humans is not a problem. The most common interval for
data acquisition is 15 s, followed by 30 s according to a survey on
Prometheus usage by the developers of Prometheus [29], a typi-
cal cloud monitoring tool. The minimum value of the interval is
1 s. Based on this survey, setting a 1-s interval, as mentioned in

*5 socket(7), https://man7.org/linux/man-pages/man7/socket.7.html
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Section 4 is sufficient for practical use.

6. Conclusion

We proposed an in-kernel flow-bundling method to bundle
TCP/UDP flows in a kernel to discover the dependencies among
network services. The proposed method can trace flows with
low overhead for applications using either short-lived or persis-
tent connections. In our experiments, we confirmed that the pro-
posed method can maintain CPU overhead of less than 2.2% even
when communicating to less than 1k network services. The la-
tency overhead to the application is 6 µs per round trip at most.

For future work, we will first implement our method to support
tracing a containerized network service. We will then develop a
visualization system for network dependencies that applies our
method. To reduce the setup and management effort of the vi-
sualization system, we will design a decentralized architecture
without maintaining a central database.
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