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Abstract—Distributed applications in web services have become
increasingly complex in response to various user demands.
Consequently, system administrators have difficulty under-
standing inter-process dependencies in distributed applications.
When parts of the system are changed or augmented, they can-
not identify the area of influence by the change, which might
engender a more damaging outage than expected. Therefore,
they must trace dependencies automatically among unknown
processes. An earlier method discovered the dependency by
detecting the transport connection using the Linux packet filter
on the hosts at ends of the network connection. However, the
extra delay to the application traffic increases because of the
additional processing inherent in the packet processing in the
Linux kernel.

As described herein, we propose an architecture of moni-
toring network sockets, which are endpoints of TCP connec-
tions, to trace the dependency. As long as applications use
the TCP protocol stack in the Linux kernel, the dependencies
are discovered by our architecture. Therefore, monitoring
processing only reads the connection information from net-
work sockets. The processing is independent of the application
communication. Therefore, the monitoring does not affect the
network delay of the applications. Our experiments confirmed
that our architecture reduced the delay overhead by 13–20 %
and the resource load by 43.5 % compared to earlier reported
methods.
Index Terms—Distributed Tracing; Linux; Monitoring; Ob-
servability; Site Reliability Engineering

1. Introduction

The number of accesses from users has been increas-
ing because of the widespread use of web services. Web
service providers have been providing services for more
than 10 years since web services first became indispensable
to people’s lives. A single service provider has come to
provide various services such as social networks, electronic
commerce, and sound and video streaming to respond to
various demands by users. When some functions of a certain
web service are accessed by other web services, there are
cases in which functions are shared by mutual connection
via a network. For these reasons, distributed applications that
form the foundation of web services have become complex.

Distributed applications for web services are usually
built by network communications among OS processes.
Network dependencies have become complex along with
increasing complexity of distributed applications. System
administrators have difficulty understanding network depen-
dency processes because of their complexity. If an error
such as a failure or performance degradation occurs in
specific processes, then it might propagate other processes
that depend on processes through the network. If system
administrators add changes to the systems without know-
ing the network dependencies, then failures might occur
throughout a range that is larger than their expectation.
Therefore, system administrators must identify the extent to
which changes are affected by investigating the dependency.
Automatically tracing dependencies unknown to system ad-
ministrators must reduce efforts for such investigations.

A method [6] reported earlier employs a network packet
filter to discover transport connections. This method has
no false positive because it discovers the connection that
actually occurred. As long as applications use the transport
connection supported by Linux kernel, the dependency can
be discovered. This method has no false positives. Therefore,
it can trace exhaustive dependencies without the need to
change the application code. Tracing the dependencies of
unknown processes is suitable because of its exhaustivity.
However, intervention in packet processing by a packet filter
in the Linux kernel adds extra delay to the application
processing.

As described herein, we propose an architecture to
trace dependencies exhaustively among unknown processes
for Linux, an OS that is widely used for servers. This
architecture monitors network sockets containing connec-
tion information, which are the termination points of TCP
connections. Socket monitoring is independent of packet
processing in the network stack because a process for
monitoring sockets only reads the connection information
included by sockets. Therefore, this architecture does not
affect the delay of the applications. The number of sockets
per unit time does not exceed the number of packets per
unit time because a connection includes multiple packets.
A socket is opened using a connection. Therefore, socket
monitoring is more resource-efficient than packet filtering.
However, this architecture does not trace the dependencies
built by network protocols other than the transport layer in



Figure 1: Local–remote dependence and remote–remote depen-
dence.

the OSI reference model: it only traces a TCP connection.
The remainder of this paper is organized as follows.

Section 2 provides background and related works. Section
3 presents details of our architecture. Section 4 presents ex-
perimentally obtained results of performance measurement.
Section 5 concludes this paper.

2. Background

2.1. Definition of dependencies

As described in this paper, we adopt the same definition
of dependency among processes as that used for a study
reported by Zand [15]. A process P2 depends on process P1

if the delay, degradation, or failure in process P1 directly or
indirectly causes delay, degradation, or failure in process P2.
Based on this definition, a study by Chen et al. [5] classified
process dependencies as local–remote or remote–remote.

Figure 1 shows each dependence. The number in the
figure 1 represents the order of request and response. First,
process P2 has a local–remote dependency on process P1 if
process P2 must contact process P1 during request process-
ing from a client. Then, process P2 has a remote–remote
dependency on process P1, which is on remote–remote if
a remote client must access to process P1 first to access
process P2.

2.2. Related works

Approaches of three types have been proposed for trac-
ing dependencies in distributed applications: packet-based
approaches, connection-based approaches, and request-
based approaches.

2.2.1. Packet-based approach. Packet-based approaches
collect network packets from existing traffic and discover
dependencies by analyzing information such as the source
and destination hosts and ports on the packet header, and
the packet transmission and reception timestamps. It esti-
mates the dependencies by finding a pattern that correlates
with traffic characteristics among processes by particularly
addressing a time difference in the traffic flow among pro-
cesses.

A salient advantage of the packet-based approach is that
no change to existing applications is necessary. Furthermore,
this approach requires no installation of additional software

for the end host. The only change is that a network switch
must be changed so that packets can be monitored with a
switch.

However, if all packets are monitored, then the cost
of packet analysis processing increases considerably when
the packet flow rate is large. In general, when sampling
packets the cost of packet analysis is reduced by sampling
packets, but the dependencies included in small traffic might
be missed.

The degree of correlation is calculated when a correlated
pattern is discovered. Therefore, the presence or absence of
a dependency is expressed as a probability. This approach
has false positives that indicate incorrect dependencies even
though they are not actually mutually dependent. In addition,
system administrators must tune the threshold because the
dependencies are determined based on a preset threshold for
the degree of correlation.

Sherlock [1], Orion [5] and NSDMiner [10] use only
packet information of existing traffic. Macroscope [12] com-
bines network packets collected by the host or network
device with transport connection information related to the
end host. Rippler [15] injects delays into network traffic and
inspects the propagation of the delays. Thereby, it reduces
false positives.

2.2.2. Connection-based approach. The connection-based
approach traces dependencies by obtaining transport con-
nection information related to the host that terminates the
connection. Unlike the packet-based approach, this approach
does not identify correlated patterns, but discovers depen-
dencies based on the actual connection. Consequently, this
approach has no false positives.

Additional effort is required of system administrators
because one must deploy additional software on end hosts
to acquire transport connection information.

A study reported by Clawson [6] has presented a
connection-based approach that uses Linux packet filters to
discover dependencies by monitoring transport connections
that terminate on the host. As long as an application uses
a transport protocol supported by Linux, it can detect de-
pendencies. Using a packet filter entails the shortcoming
of adding extra delay to application processing because it
intervenes in packet processing in the Linux kernel.

2.2.3. Request-based approach. The request-based ap-
proach traces which path in the system an application layer
request follows. An identifier is assigned to each request and
is embedded in the communication content. It is then prop-
agated to subsequent processes. Therefore, this approach
can trace, depending on the identifier, the system process
through which the request was processed.

The salient advantage of the request-based approach is
that it has low false positives because the dependence is
found based on the actual connection, as in the connection-
based approach. Furthermore, it is possible to trace informa-
tion according to the processing contents of the application
and the application layer protocol.



However, the request-based approach embeds an identi-
fier in the request, which adds extra delay to the application
response time. By sampling the embedding of identifiers on
a request basis, the delay can be reduced, but false negatives
are high for dependency detection. Furthermore, embedding
the identifier takes some time to change the application or
to place software on the communication path.

Pinpoint [4], Magpie [2], X-Trace [8], and Dapper [13]
change the application code and add processing to embed
the request identifier. Service mesh [9] assigns and embeds
an identifier to the request without changing the application
by placing proxies called sidecar proxies in microservices
[7] or other process units and communicating with other
services via the proxy.

3. Proposed Method

As described in this paper, our purpose is dependency
tracing to identify the scope of change when system ad-
ministrators make changes to components in complex dis-
tributed systems that include unknown processes. Even if
they change the code or configuration of a specific request
processing of an application running on a server, the applica-
tion memory space is shared. Therefore, the minimum unit
for tracing dependencies is a process on the host because
effects of the changes might propagate if it is a process
within the same process.

Based on characteristics of each existing study, an ar-
chitecture must be found with low overhead and both true
positives and negatives. This paper describes our proposed
Transtracer, a socket-based approach: monitoring network
sockets containing the connection information in the Linux
kernel.

Socket monitoring only reads the connection information
that is already held by the socket. Therefore, the monitoring
processing is independent of the application communication
process. Because socket monitoring does not add extra pro-
cessing to the packets in application communication path,
it reduces delay overhead compared to that by the packet
filter.

3.1. Details of the proposed method

Figure 2 presents how to retrieve socket information for
TCP connections. When the Tracer process runs on the host,
the Tracer process queries the Linux kernel and obtains a
snapshot of the active TCP connection status from the socket
corresponding to each connection. At the same time, the
Tracer process acquires the process information correspond-
ing to each connection. Then it links each connection and
each process.

Transtracer must poll, acquiring snapshots of connec-
tion status periodically, to continue to detect and acquire
new connections. However, polling delays new connection
detection by the polling time interval. As described in this
paper, the polling interval is set in seconds. The delay time
for detection is also in seconds. Even if a new connection
can be detected in a time shorter than one second, system

Figure 2: Retrieving connection information from sockets.

Figure 3: System configuration.

administrators cannot recognize it. For that reason, polling
time by units of seconds is sufficient.

Polling might miss short-lived connections within the
polling time interval. Actually, decreasing the polling in-
terval leads to an increase of the hardware resource con-
sumption per unit time, but it allows detection of shorter-
lived connections. The polling interval is assumed to be in
seconds. Therefore, the lifetime of the detectable connection
is assumed to be in seconds.

Figure 3 presents the system configuration for matching
the connection information related to multiple hosts and
for creating a dependency graph. Tracer running on each
host sends connection information to the central Connection
Management DataBase (CMDB). The system administrator
or each host queries the CMDB using information that
uniquely identifies the target host or process and the time
range as parameters. Thereby, it obtains the dependency
associated with the target. Dependencies can be expressed as
a graph structure for each process connected to the network,
assuming that the process is a node and that the network
connection is an edge. Details of the data structure using
the relational database are described in section 3.2.



Figure 4: Recognition of connection direction.

Figure 4 portrays a method for identifying dependency
direction. A TCP connection is divided into the side of
requesting a connection and the side of listening on a
connection as follows. Dependency direction is determined.
If process A on host X is listening on port M and process
B on host Y connects to port M on host X, then process B
will fail to connect without process A. Thereby, process B
depends on process A.

If all TCP connection events that can be acquired on the
host are collected, then the number of connection informa-
tion increases and the number of records on the CMDB
increases. To reduce the number of records, Transtracer
reduces redundant connection information. Each process
might connect to another process using an ephemeral port,
which is a random source port assigned by the OS. There-
fore, a process listening on a specific port might be con-
nected from a client of a specific process using multiple
random source ports. However, dependency detection does
not need an ephemeral port as unique connection informa-
tion because a Tracer process aggregates ephemeral ports
to which the same listening port is connected into a single
flow, and sends it to CMDB.

3.2. Implementation of the proposed method

We implement the Tracer process on the premise of
Linux (Linux Kernel 4.15) because Linux is used widely as
an OS for servers. We implement the CMDB on PostgreSQL
(version 11.3) because PostgreSQL is a relational database
that is used widely for database management systems and
because PostgreSQL has an easy to manage IP address
because PostgreSQL has network address types as data
types.

The inet diag module that monitors the transport pro-
tocol socket is used to acquire the TCP socket informa-
tion. The inet diag module can obtain socket information
such as the destination IP address, destination port number,
source IP address, source port number, connection status,
and socket inode number. The interface for accessing the
inet diag module includes the file system format Process
Filesystem (procfs) and Netlink [11], which is a mechanism
for message communication between the kernel space and
user land in Linux. Our implementation uses not procfs
but Netlink, which is accessible at higher speeds because
parsing file contents is not necessary, unlike procfs.

The socket information from the inet diag module does
not include information about the process which owns the
socket. Our implementation compares the inode number of
the socket information with the inode number of the process.

TABLE 1: Experiment environment

Role Item Specification
Client CPU Intel Xeon CPU E5-2650 v3 2.30 GHz 2core

Memory 1 GBytes
Benchmarker wrk 4.1.0-4

Server CPU Intel Xeon CPU E5-2650 v3 2.30 GHz 4core
Memory 1 GBytes
HTTP Server nginx 1.17.3

CMDB CPU Intel Xeon CPU E5-2650 v3 2.30 GHz 1core
Memory 1 GBytes
Database PostgreSQL 11.3

If they match, it then links the socket and process. The
inode number of a process is obtainable from the file under
/proc/[pid]/[fd]/ on procfs.

Our implementation stores dependency data in the Post-
greSQL server, which is used as CMDB. A table for storing
the node (processes table) and a table for managing the
edge (flows table) are required because a dependency is
expressed as a directed graph configured with a process
as a node and a connection as an edge. However, because
of aggregation of connections, the active open side node
which has aggregated ephemeral ports has no single port
number, although the passive open side node has a listening
port number. Therefore, because representation of the active
open side and the passive open side with the same schema
is difficult, the active open side node and the passive open
side node are separated as different tables (actibe nodes and
passive nodes tables).

We developed the implementation above under the name
Transtracer [14]. Transtracer includes two commands: ttrac-
erd runs as a daemon on the host, collects connection
information of sockets and saves in the CMDB; ttctl is used
to query the CMDB and obtain dependencies. Separating the
command on the writing side and the reading side in this
way specifies the argument options and avoids confusion of
the user. A Transtracer user sets up the PostgreSQL server
as the CMDB, starts up ttracerd on all hosts, and then uses
ttctl to query the CMDB after accumulating dependencies
in the CMDB.

4. Performance Evaluation

To confirm the Transtracer architecture’s effectiveness,
we evaluated the delay overhead and the resource load that
Transtracer imposes by the implementation presented in the
3.2 section.

4.1. Experiment environment

Table 1 presents the experiment environment. We con-
structed each role of the experiment environment one by
one on virtual servers of Sakura Cloud1. The OS of each
role is Ubuntu 18.04.2 Kernel 4.15.0. The bandwidth among
virtual servers is 1 Gbps. We ran the ttracerd process on
Server, and benchmarked nginx on Server by wrk2, an HTTP
benchmarker, on Client.

1. https://cloud.sakura.ad.jp
2. https://github.com/wg/wrk



We configured the benchmarking environment of Claw-
son’s study [6] as follows, which is an early method
of a connection-based approach, for comparison with
Transtracer. In the environment, TCP connection logs de-
tected by iptables, a Linux packet filter, on the Server were
streaming to systemd-journald, the log management process
adopted in the default of Ubuntu 18.04. We performed the
same benchmark by wrk.

We classified a packet filter method for detecting con-
nections into two methods: NEW filter and the established
(ESTB) filter. The NEW filter method leaves logs only when
a new connection is made from a client by iptables. NEW
filter method has a small log volume, but reused connections
cannot be detected later. The ESTB filter method keeps
logs of all packets that flow from the already established
connection from Client. The ESTB filter method has a larger
log volume than the NEW filter method and has no detection
omission. The experiment undertaken for Clawson’s study
adopted ESTB filter method and sampled packets at only 20
packets per minute. Sampling might not detect connections
with low packet rates. Therefore, we set it to invalidate
sampling.

The configurations common to each subsequent exper-
iment are organized. nginx only returns a statically placed
612-byte HTML file. The number of nginx worker processes
was set to be 2 out of 4 cores so that only nginx would not
use up the CPU cores. The thread count of wrk was set
to 1; wrk ran a benchmark of 60 s. To keep the number
of connections during one benchmark as fixed, we enabled
HTTP Keep-Alive on both nginx and wrk so that the value
of the connection timeout was set to a value larger than
the benchmark time. To measure the CPU utilization of
each process, we used the Linux pidstat command and set
the measurement interval specified in pidstat to the same
value as the polling interval. Unless otherwise specified, we
set the polling interval when the ttracerd process obtains
connection information from the socket to 1 s. The resource
load values measured hereinafter are the average values of
five consecutive measurements during one benchmark.

4.2. Experiments

First, we evaluated the delay overhead that Transtracer
allocates to the application on the server being traced. We
graphed the average response time of each of the four
conditions: the state without tracing (normal), the state
where the ttracerd process is started (ttracerd), the ESTB
filter, and the NEW filter when the number of simultaneous
connections of wrk was increased from 5,000 to 20,000.
Figure 5 portrays the results of this experiment. Transtracer
was 13–20 % smaller than the value of ESTB filter and
5.8–16.2 % smaller than the value of NEW filter for every
number of connections. Results show that the response time
of Transtracer was 1.7–13.4 % longer than in the normal
state. Therefore, Transtracer can reduce the delay overhead
of the response time compared to earlier methods.

Second, we evaluated how much overhead the resource
load would have on the servers to be traced if not using
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Transtracer to trace dependencies. We graphed the change
of CPU usage rate of the ttracerd process and the ESTB
filter. The change of connection information acquisition time
was graphed when the number of concurrent connections of
wrk was increased from 5,000 to 20,000. Figure 6 presents
the results of this experiment. The ESTB filter method has
a CPU utilization of more than 70 % for every number of
connections, whereas the ttracer process CPU utilization is
44.4 %, even at 20,000 connections. Results demonstrate
that Transtracer reduces the CPU load by 43.5 % compared
to the ESTB filter method.

The NEW filter is superior to other methods in terms
of CPU utilization in an environment where connections
are reused. That is true because the NEW filter, which
matches only new connections, uses the CPU only when the



connection is established at the start of the benchmark and
each CPU load of the other methods is applied constantly
during the benchmark. However, comparison with different
measurements which measure the average value of CPU uti-
lization during the benchmark and the method of measuring
the instantaneous CPU utilization only at the start of the
benchmark is difficult. Therefore, Figure 6 does not display
the CPU utilization of the NEW filter.

These results suggest that the Transtracer architecture
functions effectively because the response delay overhead
and the resource load overhead are less than those of earlier
methods. Even in a high-load environment with numer-
ous connections, Transtracer is useful with low overhead.
Therefore, Transtracer can achieve exhaustive dependencies
without compromising the operational environment of the
real environment, such as not tracing the dependencies
only on high-load hosts. However, short-lived connections
lasting only seconds might be missed because of polling. In
web services, processes might reuse connections to reduce
processing costs associated with each connection because of
the use of HTTP/2.

5. Conclusion

As described in this paper, we proposed a novel ar-
chitecture, Transtracer, a network-dependency tracing pro-
gram among processes unknown to system administrators
by monitoring sockets, which are connection termination
points on Linux, in distributed applications. Transtracer can
trace exhaustive dependencies without affecting the commu-
nication delay of applications while reducing the resource
consumption load on target hosts. Results of the experiment
confirmed that the response delay overhead was reduced
by 13–20 %. The resource load was reduced by 43.5 %
compared to methods reported earlier.

Future works are described below. First, by detecting
dependencies reliably, even for short-lived connections, we
will implement socket monitoring by streaming connection
events from sockets with Linux extended Berkley Packet
Filter (eBPF). Second, we plan to support container virtual-
ization environments. Finally, to reduce the cost of CMDB
setup, we consider a method by which the Tracer process
on each host distributes and stores connection information
related to localhost.
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