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Abstract—Monitoring service providers have arisen to meet
increasing demands from system administrators. Providing a
monitoring service requires high-resolution time series, long-
term retention, and high write scalability to a time series
database (TSDB). Nevertheless, no research to date has exam-
ined proposed TSDBs with consideration of the extensibility
of data structures for function additions of a monitoring
service. As described herein, we introduce a TSDB architecture
for automatically tiering on heterogeneous key-value stores
(KVS) that combines with an in-memory KVS and an on-
disk KVS. Our proposed architecture, by unbundling the data
structure on memory and disk as different KVSs, enables the
TSDB extensibility to duplicate writes to new data structures
optimized for each use case without reducing writing efficiency
or data storage efficiency.

1. Introduction

As internet services have become widely available, de-
mand is increasing from users for availability and response
speed of systems supporting these services. Therefore, it is
necessary to monitor the systems for system administrators
to identify a problem quickly when a failure occurs in the
systems. However, system administrators bear burdens such
as system setup work and continuous hardware and soft-
ware update work because monitoring requires an additional
stand-alone system. A monitoring service enables system
administrators to alleviate these burdens.

A monitoring system periodically collects metrics for
measuring the state of systems such as memory usage for
the target system. Then it stores the time series data in
a time series database (TSDB) [11] and displays metrics
as graphs of the time series. It is necessary to record the
metrics in a TSDB with high resolution to avoid missing the
state change in a short time to analyze the unplanned events
using the graphs. Additionally, it is necessary to retain past

data for a long time to analyze causes after failure recovery
and to analyze changes of past load situations for capacity
planning.

However, writing high-resolution metrics to storage in-
creases the number of writes to the disk. Furthermore,
storing high-resolution metrics for long periods increases
storage usage. Therefore, writing operations and data storage
must be effective. Furthermore, a monitoring service has
grown, for instance, the number of users has increased, the
scale of system managed by the users has increased or the
number of metrics collected per unit time has increased.
Consequently, a monitoring service for the TSDB requires
high write scalability.

Earlier methods [16], [10], use key-value store (KVS)
[7], which is a database management system (DBMS) that
has a basic element of data as a key-value pair. Actually,
KVS makes it easy to scale write processing horizontally
because it is easy to distribute data in element units that are
not mutually dependent. Because earlier methods configure
a DBMS as a single building block, we change the DBMS
software itself to make extensions such as adding a new data
structure.

However, a problem exists: it is difficult to extend the
DBMS with tightly coupled functions because, in general,
extending loosely coupled software is easier than extending
tightly coupled software because loosely coupled software
has fewer influential parts. Growth of monitoring services
requires addition of new functions such as the analysis
of long-term metrics other than merely displaying graphs.
Therefore TSDB extensibility is required. The TSDB ex-
tension here means, for example, writing the same data to
separately prepared new data structures such as index opti-
mized for each use case by changing the write processing
for each of the memory and the disk.

This research is intended to realize a TSDB architecture
that achieves the extensibility of the data structure and
write scalability without reducing either write efficiency or



data storage efficiency. First, we adopt a loosely coupled
architecture that adds different DBMSs matching the char-
acteristics of the extension rather than changing the DBMS
software itself to extend the data structure. The interface
for writing and reading is integrated so that it resembles
each TSDB user while using multiple different DBMSs.
Next, our architecture uses KVS as a DBMS for writing
scalability. Furthermore, our architecture uses in-memory
KVS [20], which has all the data in the memory, instead of
on-disk KVS, which has all the data on the disk, to reduce
the number of writes to the disk and to improve writing
processing efficiency.

Therefore, we propose a loosely coupled TSDB archi-
tecture with heterogeneous KVSs that improves data storage
efficiency by on-disk KVS and improves the write efficiency
by in-memory KVS. Specifically, it is possible to reduce
memory usage on in-memory KVS by automatically tiering
between KVSs, with acceptance of writing with in-memory
KVS and moving old data on the memory to the on-
disk KVS. In short, our architecture combines benefits of
high write efficiency of in-memory KVS and data storage
efficiency of on-disk KVS. Our architecture also unbundles
the writing process to memory and disk from specific DBMS
to extend the data structure merely by changing the part of
the writing process.

We organize the paper as described below. Section 2
provides related works. Section 3 details our architecture.
Section 4 details the implementation of our architecture.
Section 5 presents experimental results of performance mea-
surement. Section 6 describes the experience of deploying
our architecture to the production environment of Hatena’s
Mackerel [13] monitoring service. In section 7, we summa-
rize our contributions.

2. Related works

The TSDB for monitoring services requires write ef-
ficiency, data storage efficiency, and write scalability with
extensibility of data structure. However, existing methods
present difficulties related to extensibility of the data struc-
ture. Therefore, we describe the features and shortcomings
of existing methods.

OpenTSDB stores data points in HBase [9], which is a
KVS that places data points on disk, and which has write
scalability by HBase’s distribution mechanism. Similar to
Bigtable [8] using Log Structured Merge Tree (LSM-Tree
[15]), HBase’s storage engine uses log precedence write,
a memory structure called MemStore, and a disk called
HStore. Data stored in the MemStore are written to the
HStore collectively so that the number of times of disk
writing per unit time is reduced compared with writing
directly to the disk.

Gorilla [17] is an in-memory TSDB particularly address-
ing reading performance by holding all the recent data points
on memory. It is storage called Operational Data Store
(ODS) using HBase hold long-term data in the layer. Gorilla
specifically examines reading data at high speed because
data points are written simultaneously to both in-memory

TSDB and ODS. However, it does not reduce the write
processing to ODS.

InfluxDB [10], similar to HBase, implements Time
Structured Merge Tree (TSM), which optimized LSM-Tree
for time series data. Data points accumulated in the data
structure in memory are written collectively to disk. Fur-
thermore, InfluxDB achieves high writing efficiency and
data storage efficiency because of the delta encoding method
proposed by Gorilla.

From the viewpoint of data structure extensibility,
OpenTSDB and InfluxDB are configured as a single DBMS
in which various constituent elements are tightly coupled;
it therefore can be said that their extensibility of the data
structure is low. Although Gorilla probably extends the in-
memory data structure because of requests that cannot be
satisfied by HBase, there is no mention of extensions other
than hastening reading processing.

3. Proposed Method

We propose HeteroTSDB, a TSDB architecture that
unbundles memory and disk data structures into different
KVSs, and which loosely couples them without reducing
either write efficiency or data storage efficiency and which
achieves write scalability by KVS, independent of the ar-
chitecture of a specific DBMS to ensure the extensibility,
which is a challenge of the existing method described in
section 2.

3.1. HeteroTSDB Architecture

The HeteroTSDB architecture adds a different DBMS
that matches the characteristics of the extension instead
of changing the tightly coupled DBMS to increase the
extensibility of the data structure. It also integrates each
DBMS so that it can be regarded as one DBMS by adopting
a combined architecture. HeteroTSDB uses KVS, which is
easy to distribute, to achieve write scale-out. Furthermore,
HeteroTSDB realizes automatically tiering by which the
data points are written to the in-memory KVS. The old data
on the in-memory KVS is moved to the on-disk KVS in
units of time series to increase the write efficiency and the
data storage efficiency to a practically acceptable level.

However, an in-memory KVS entails the difficulty that
data on the memory disappears. HeteroTSDB resolves that
difficulty by write-ahead logging (WAL) [14], by which data
points are written as logs on disks of servers independently
from the in-memory KVS before written to the in-memory
KVS. The WAL restores volatilized data points from logs to
the in-memory KVS when the in-memory KVS breaks down
and data points are volatilized. HeteroTSDB implements
WAL by writing data points via message broker [12], which
saves the received message and sends the message to the
prepared subscribers.

Figure 1 shows the mechanism of HeteroTSDB archi-
tecture. First, the writing process is the following.



Figure 1: HeteroTSDB architecture.

(1) The client writes to the message broker. If the write
to the message broker is completed, then a response
is returned to the client.

(2) Asynchronously with the client writing, Met-
ricWriter subscribing to the message broker writes
to the in-memory KVS.

(3) Move data points with a timestamp older than a
certain amount from the in-memory KVS to on-
disk KVS in the background.

Next, the reading process is the following.

(i) The client sends a query including the metric name
and timestamp range to MetricReader.

(ii) MetricReader reads the metric series from each
KVS based on the condition of inquiry.

(iii) MetricReader reads from each KVS, combines the
metric series and returns it to the client.

3.2. Time Series Data Structure

In the HeteroTSDB architecture, time series data must
be stored in a key-value format to store time series data
on KVS. Figure 2 shows the time series data structure in
the key-value form combined with the timestamp alignment,
division into time window, and the hash map. In Fig. 2, the
name is the metric name, timestamp is a 64-bit integer type
value representing the UNIX time of a data point, value is
a numeric value of 64 bit floating point type representing
the value of a data point, and wtimestamp is a UNIX time
representing the start time of the time window.

Timestamp alignment: Align the timestamp to a multiple
of the resolution before writing data points and specify the
list of timestamps included in the range of the timestamp
range statically to support range searching for KVS.

Division into time window: Store multiple data points
in the same metric series in one key-value pair instead of
storing one data point in one key-value pair to reduce the
number of times of reference to KVS. The data points are
contained within the limited size by dividing the metric
series into fixed-width time windows.

Hash map: Use the hash map to prevent data loss when
a temporary error occurs during the write process to KVS.
The hash map preserves idempotent because the data points
having the same timestamp are overwritten.

Figure 2: Time series data structure.

Figure 3: Data movement between KVSs: timer method.

3.3. Data Movement Between KVSs

In the HeteroTSDB architecture, it is necessary to move
only old data from in-memory KVS to on-disk KVS while
receiving new data points. Therefore, we propose a timer
method and a counting method.

Figure 3 portrays the timer method: a timer is set in units
of key-value pairs of KVS; when the timer becomes 0, the
key-value pair is delivered to a trigger registered in advance.
Then the trigger executes the data movement processing of
the key-value pair. The timer method enables concurrent
processing easy in the trigger processing associated with
each key-value pair because it is sufficient to process the
data movement of one key-value pair and because each
processing can be processed independently. The timer is
implemented using time to live (TTL) set in units of key-
value pairs.

We propose a counting method based on KVS that
does not implement TTL, specifically examining that data
points of metric series are written at regular intervals. The
counting method counts data points in the time window
when MetricWriter writes the data points to the in-memory
KVS. MetricWriter reads the time window from the in-
memory KVS if the number of data points is over a certain
number. Then MetricWriter writes it to the on-disk KVS and
deletes it from the in-memory KVS. However, a problem
exists by which the data points remain on the in-memory
KVS if the metric series are no longer written. They are not
moved to the on-disk KVS. Therefore, independent from
MetricWriter processing, the residual data points on the in-
memory KVS move to the on-disk KVS.



3.4. Data Structure Extension

We present a method to extend the data structure: pre-
pare different DBMSs with different data structures (here-
inafter additional DBMSs) in addition to the in-memory
KVS and the on-disk KVS having the data structure de-
scribed in section 3.2, replicate the time-series data to
the additional DBMS, and add processing to refer to the
additional DBMS to MetricReader.

The methods for replication writing include the follow-
ing two points. Real-time writes: Write the time-series data
to additional DBMSs by process units such as MetricWriter
that subscribe to the message broker. Batch writes: Write the
same contents as the time-series data written in the on-disk
KVS to the additional DBMSs after writing to the on-disk
KVS in either the count method or timer method.

Real-time writes immediately write the time-series data
written from the client to the message broker to the ad-
ditional DBMS. They enable MetricReader to refer to the
replicated data. Batch writes reduces the number of writes
to the additional DBMS similarly to on-disk KVS, whereas
the timing of writing to the additional DBMS is delayed
by the latency to accumulate data points on the in-memory
KVS. Furthermore, consistency of data between DBMSs is
guaranteed in either method by retrying from the beginning
process to an idempotent data structure on the additional
DBMS, even if an error occurs during writing to the DBMS.
Our approach can select either real-time writing or batch
method according to the properties of the additional DBMS
for the tradeoff between the number of writes to the addi-
tional DBMS and the delay time to replicate the data.

4. Implementation

We show an implementation of the HeteroTSDB archi-
tecture using Amazon Web Services (AWS). Our implemen-
tation constructs heterogeneous KVSs in a 3-tier structure,
so that the data storage efficiency is superior to that of a
2-tier structure. In addition, operating heterogeneous KVSs
and a message broker generate a greater burden than when
operating a single DBMS to build the environment of OS
and various applications running on the server, update for
countermeasures against software bugs and vulnerabilities,
and scale-out the server per an increase in load. Therefore,
our implementation uses the serverless platform [19] to
automate work easily by directly executing application pro-
gramming interface (API) because the cloud service provider
automatically processes these burdens.

Figure 4 presents the system configuration. Amazon
Kinesis Data Streams [4] acts as a message broker, allowing
users to pass received messages to the arguments of an AWS
Lambda [6] function. MetricWriter is a Lambda function
linked with Kinesis Data Streams. Amazon ElastiCache for
Redis [3], [18] is an in-memory KVS. Amazon DynamoDB
is an on-disk KVS built on SSD (solid state drive). Amazon
S3 [5] is an object storage with a unit cost of about one-
tenth of that of DynamoDB. MetricCleaner is a Lambda
function that scans the data remaining on the in-memory

Figure 4: System configuration.

KVS by batch processing and moves it to the on-disk KVS
and launches the Lambda function periodically by Amazon
CloudWatch Events [1]. MetricReader is a Web server on
Amazon EC2 [2].

Our implementation uses a timer method that we can
readily implement on the serverless platform in data move-
ment from DynamoDB to S3 because, if TTL becomes
0, the Lambda function activated by DynamoDB Triggers
deletes key-value pair. The processing of the Lambda func-
tion (MetricMover) here receives the deleted key-value pair
and merely writes it to S3. However, because Redis has
no function to link with the Lambda function such as
DynamoDB in moving data from Redis to DynamoDB, our
implementation uses a counting method to realize it on the
serverless platform.

5. Performance Evaluation

We evaluated write efficiency, data storage efficiency,
and write scalability by part of the implementation shown
in section 4 to confirm the effectiveness of the HeteroTSDB
architecture. In the experiment, we built the experimental
environment shown in Table 1 and implemented the bench-
mark to write the metrics to the message broker. We assume
a situation in which an agent for sending the collected
metrics to the monitoring system periodically runs on the
host.

We implemented a benchmark program capable of spec-
ifying the number of metrics, the number of agents, and the
agent’s metric transmission interval and one transmission
to imitate the production environment. For the following
benchmark, the metric transmission interval was 1 min, the
agent simultaneous transmission metric number was 100,
and the number of data points in the same metric sequence
was 15 on the in-memory KVS. Table 2 presents a combina-
tion of variable parameters for each benchmark, excluding
these fixed parameter values. Write Capacity Units (WCU),
defined by AWS, is the capacity for writing to a DynamoDB
table. For example, one write per second of 1 KB or less
for one item on the table becomes 1 WCU.

First, to evaluate the write efficiency, we confirmed
whether the number of times of writing to the on-disk KVS
decreases, or not, by receiving a write in the in-memory
KVS, with comparison to the case of writing directly to the
on-disk KVS.
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Figure 5: Experimental result.

TABLE 1: Experimental environment
Roll Item Specification
Benchmark EC2 instance
Client type c 5.4 xlarge

OS, Kernel Amazon Linux 2, 4.14
Message Kinesis Data Streams
Broker number of shards 32
MetricWriter Lambda

Memory Amount 1600 (MB)
Runtime Node.js 8.10

In-Memory KVS ElastiCache for Redis
Type cache.r4.large
Version 3.2.10

On-Disk KVS DynamoDB

TABLE 2: Scale-out performance benchmark parameter
Number of agents Number of in-memory nodes WCU

P1 40,000 3 6,000
P2 80,000 6 12,000
P3 120,000 9 18,000
P4 180,000 12 24,000

Next, to evaluate the data storage efficiency, we con-
firmed whether the data points can be transferred to the on-
disk KVS, or not, without the free memory amount of the
in-memory KVS becoming 0. By operating the benchmark
program for 2 hr using the P1 parameter of Table 2, we
observed and graphed changes in the number of minutes of
writing to the in-memory KVS and the on-disk KVS, the
amount of free memory in the in-memory KVS, and the
change in the CPU utilization rate.

Figure 5(a) shows the transition of the number of write
times. Figure 5(b) presents the transition of the amount of
free memory in the in-memory KVS and the change in the
CPU utilization rate.

Finally, we checked whether the number of writes scales-
out to evaluate the write scalability when increasing the
capacity of each KVS. For each combination of parameters
of Table 2, we ran the benchmark program for 2 hr, found
the average value of the number of written data points, and
graphed it. Figure 5(c) shows the scale-out performance
of the in-memory KVS and the on-disk KVS. However,
we excluded the first 15 min of the benchmark from the

calculation of the average value to prevent the number of
times of writing to the on-disk KVS from unduly decreasing.
This was true because the number of times of writing of the
on-disk KVS became 0 because the data points were stored
in the in-memory KVS for the first 15 min.

Figure 5(a) shows that the number of minutes of the in-
memory KVS writing was constant at a value of about 4
M and the number of times of writing to the on-disk KVS
was 0 in the first 15 min. Then it took a value between 70k
and 170k. The value 4M matches the number of write data
points for the minute specified by the benchmark program.
The number of writing per minute to the on-disk KVS is
about one-twentieth of the number of writes per minute of
the in-memory KVS.

The number of writes per minute to the in-memory KVS
is expected to be about the same as the ones to the on-disk
KVS because, if we perform the same benchmark with the
method of writing directly to the on-disk KVS, then the on-
disk KVS will accept the number of write times accepted
by the in-memory KVS instead of the in-memory KVS.
Therefore, our architecture apparently reduces the number
of writes to the on-disk KVS to about one-twentieth of those
used with the method of writing directly to the on-disk KVS.

Figure 5(b) shows that the free memory usage of the
in-memory KVS decreases gradually from the maximum
capacity of 16 GB until the benchmark time increases to 50
min; then it transits while taking a constant value at around
10.5 GB. Master in figure 5(b) denotes the master node in
the cluster, and slave1 and slave2, to which MetricWriter
is distributed as a part of the reading process, denote the
two slave nodes. The CPU utilization of the master node
was about 45% until 15 min pass but is constant. Then it
increased to about 60% and to about 75% value between the
waveform shapes. The shape of the CPU utilization graph of
the slave nodes resembles that of the master node because,
after 15 min, about 40% is the maximum value, about 35%
is the minimum value.

The memory usage on the in-memory KVS is expected
to increase monotonically with time because the benchmark
client used for the experiment transmits data points having



the same metric name and the same timestamp only once.
The data points are only added for the in-memory KVS. Fur-
thermore, it appears that our architecture remains constant
with the memory usage of the in-memory KVS because the
memory usage does not change with the lapse of time, by
moving the data points to the on-disk KVS.

The parameter set for Figure 5(c) shows the combination
of the parameters of Table 2. The nodes in the in-memory
KVS increase by three because the in-memory KVS cluster
is configured as one master node and two slave nodes as
one shard. Figure 5(c) shows that our architecture most
likely scales out because the number of write data points per
minute increases linearly with the increase in the number of
nodes and WCU.

6. Experience In Production

This section presents an example of deploying the Het-
eroTSDB architecture to the production environment of
Mackerel, which is the monitoring service provided by
Hatena Co., Ltd. Specifically, we describe the several un-
planned events that occurred during the year from August
2017 through August 2018, which affected some portion of
Mackerel’s site availability. The system configuration in the
production environment was equivalent to figure 4.

Two faults were found during the period above. In the
first case, the write load concentrated on a specific node
of the in-memory KVS. The memory consumption in the
node reached the upper limit. Furthermore, as a result of
the OS forcibly stopping the process, data of a plurality of
specific metrics temporarily disappeared. For this reason,
the data points that remained in Kinesis Data Streams were
restored by running the Lambda function from the time
before the time of loss, thereby recovering the lost data
points. Apparently HeteroTSDB was able to resolve the
shortcoming of data persistence at the time of the in-memory
KVS failure by the message broker.

In the second case, more than the expected data points
with the same metric name and the same timestamp are writ-
ten in a short time. The write query size for the in-memory
KVS exceeds the upper limit of implementation. Symptoms
at that time were that errors occurred, the Lambda function
continued to be retried, and processing of the entire Met-
ricWriter was delayed. We modified the program of Met-
ricWriter. Thereby, we eliminated duplication of data points
having the same metric name and the same timestamp.

7. Conclusion

In this paper, we proposed HeteroTSDB, an extensi-
ble TSDB architecture for automatically tiering in-memory
KVS and on-disk KVS, on the premise of heterogeneously
DBMS configuration to enhance the data structure exten-
sibility. We have implemented HeteroTSDB on an AWS
serverless platform to reduce the burden of construction of
multiple DBMSs and scale-out work. Our experiment con-
firmed that HeteroTSDB can withstand practical use while
adopting a loosely coupled architecture for extensibility.

As future work, first, it is necessary to demonstrate that
the HeteroTSDB is practical in terms of performance after
comparison with other TSDBs. Next, we will implement
extensions of the data structure and evaluate the extensibility
of HeteroTSDB.
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